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Abstract

An inverse method is investigated to evaluate the unsteady rotating forces (dipole strength distribution)
acting by the fan on the fluid from far-field acoustic pressure measurements. A development based on the
tonal noise generated by a propeller is used to derive a discretized form of the direct problem. The inversion
of this direct problem is ill-posed and requires optimization technique to stabilize the solution for small
perturbations in the measured acoustic input data. The reconstruction reveals that the conditioning of the
inverse model depends on the aeroacoustic source and far-field sensor locations as well as on the frequency
under investigation. Simulations show that an adequate choice of a regularization parameter leads to a
satisfactory reconstruction of imposed unsteady rotating forces in the presence of measurement noise, and a
correct localization of acoustic ‘‘hot spots’’ on the radiation surface. Preliminary experimental results also
show the ability to extrapolate the radiated sound field at blade passage frequency (BPF), and harmonics,
from the reconstructed forces. These data are exploited in the second part of this paper to evaluate various
active control strategies for tonal fan noise.
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Nomenclature

a1 inner rotor radius
a2 outer rotor radius
B number of blades
c speed of sound
e error vector
fz axial pressure component acting on the

rotor
f 0

z time average value of the axial pressure

f̄
0

z circumferential average value of f 0
z

g1z Green function (dipolar radiation along
the z axis)

Hs transfer function matrix at o ¼ so1

i imaginary number ð
ffiffiffiffiffiffiffi
�1

p
Þ

I number of radial elements
J number of point in the discretized

radiation space
Js cost function at o ¼ so1

Jsbþq Bessel function of the (sB þ q)th order
k wavenumber (k ¼ sk1 ¼ so1=c with

o1 ¼ BO)
p acoustic pressure
ps acoustic pressure at so1

p̂s far-field acoustic pressure measurement
vector at so1

qmin, qmax minimum and maximum circumfer-
ential order q to be reconstructed

Q number of circumferential harmonics to
be reconstructed

S/N signal-to-noise ratio
r;j; W spherical coordinates in the radiation

space
x, y, z Cartesian coordinates in the radiation

space

r1, j1 polar coordinates in the rotor plane
t time
as time Fourier coefficient
b regularization parameter
bq Azimuthal Fourier coefficient
Dr1 distance between two radial elements
k condition number
s2 variance of the random error vector

added to the simulated sound pressures
si singular values
o angular frequency
o1 blade passage angular frequency ðo1 ¼

BOÞ
O angular velocity of the rotor

Subscripts and indices

q, l circumferential index
s, n frequency index
i radial element
j radiation space discretization index
L condensed source discretization index

(i, q)
z axial component
j radial component

Superscripts

H Hermitian
� complex conjugate
þ pseudo-inverse
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1. Introduction

Due to the increasing demand of improved passenger safety and comfort and to the increasing
use of communication systems, interior acoustic comfort of future automobiles is expected to be
one of the main decision-making factors in an extremely competitive market. Tonal noise of axial
engine cooling fans is among the several noise sources inside an automobile. For fans with equal
blade pitch, dominant tones are radiated underhood by engine cooling fans at the blade passing
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frequency (BPF, typically around 300 Hz) and its multiples, and are transmitted in the car
interior. Therefore, there is a need for manufacturers of engine cooling units to design improved,
low-noise axial fans. These two companion papers investigate active control of tonal noise from
axial automotive fans as a solution to increase interior acoustic comfort of cars. The first part
details an inverse aeroacoustic model to characterize an automotive axial fan as an extended
acoustic source; the second part exploits this aeroacoustic model in active control simulations and
experiments in free field.

Fan noise has been a topic of research since the first analytical aeroacoustic models by Ffowcs
Williams and Hawkings [1], Wright [2] or Lowson [3] some 30 years ago. Direct methods have
been developed for the calculation of the radiated sound field based on the dynamic forces applied
by the blades on the fluid in a fixed reference frame. Rotor tonal noise resulting from vane/rotor
interaction or non-uniform flow conditions has been extensively studied [2–4], and it has been
demonstrated that, at a rotation Mach number below 0.8 [5], the quadrupolar source can be
neglected and the unsteady pressure along the blade surface is equivalent to a dipole distribution.
However, it is difficult in practice to estimate the strength of this extended acoustic source. State-
of-the-art CFD or aeroacoutic codes presently attempt to predict the unsteady aerodynamics and
both the tonal and broadband sound radiation of the propeller [6]; on the other hand, the
measurement of pressure fluctuations on the fan blades require sophisticated or expensive
experimental techniques such as integrated piezoplastic sensors [7] or other miniature pressure
transducers [8].

Alternative inverse aeroacoustic problems have been recently investigated to overcome these
difficulties and to develop non-contact measurement techniques. For example, Li and Zhou [9]
developed an inverse method to reconstruct the blade surface pressure distribution from the
radiated sound field. Their work is based on the inversion of the Farassat integral solution of the
Ffowcs Williams and Hawkings equation, assuming that the aerodynamic loading on the surface
of the propeller is steady. Luo and Li [10] also proposed an inverse aeroacoustic model of rotor
wake/stator interaction based on a Fredholm integral equation of the first kind. The unsteady
surface distribution on the stator surface is derived from the radiated sound field. Other studies
focused on the inverse aeroacoustic model of a rectangular wing or a flat plate interacting with a
gust [11,16]. The above inverse aeroacoustic models generally lead to the inversion of an ill-
conditioned matrix. Numerical results demonstrate that optimization and regularization
techniques have been successfully used to solve these problems [12] but no experimental results
have been reported yet for the source characterization of axial fans.

This paper investigates an inverse aeroacoustic approach to model the elementary acoustic
source distribution on the surface of an axial fan from its far-field noise directivity. The derivation
of an accurate and physically realistic acoustic model of an axial fan is the first step towards an
effective active noise control strategy. The proposed inverse model takes into account the flow
disturbance responsible for the tonal noise generation of subsonic axial fans. In the first section of
the paper, the direct aeroacoustic model is detailed, whereby the far-field radiated sound is related
to the non-uniform flow and the blade pressure distribution by solving the Helmholtz integral
following the approach of Morse and Ingard [4]. The inverse model is detailed in the following
section, and a regularization technique is proposed to overcome a poor conditioning of the inverse
problem. The inversion is first tested on simple examples to assess the influence of a number of
parameters (such as the discretization of the fan source, frequency and sensing configuration) on
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the conditioning of the inverse model. Then, a numerical case related to non-uniform upstream
flow condition is conducted to demonstrate the feasibility of the reconstruction approach and the
ability to distinguish the acoustically radiating components obtained from flow non-uniformities.
Finally, preliminary experimental results for the extrapolation of the radiated sound field at blade
passage frequency (BPF) and at its harmonics are presented on an actual engine cooling system.
2. A direct model for tonal noise of subsonic axial fans

The general aeroacoustic equations derived by Ffowcs Williams and Hawkings (FW–K) [1]
include the case of a moving surface in an infinite fluid medium at rest outside the flow region [5],
and therefore can be used to extract the physical mechanisms of axial fan noise. In general, the
expression of the acoustic pressure in the fluid involves three terms: the first term is associated
with a moving quadripole source that represents the generation of sound due to turbulent volume
sources and corresponds to the solution of the Lighthill theory. This quadripole source is
significant only if the blade tip Mach number exceeds 0.8 [5] and is therefore irrelevant to the
automotive fan noise, for which blade tip Mach numbers generally do not exceed 0.15. The second
term is related to a moving dipole source due to the unsteady forces exerted by the solid surfaces
on the fluid. This is the well-known ‘loading noise’ or ‘dipole noise’, the principal cause of fan
noise [2,5]. The last term is equivalent to a monopole radiation due to the volume displacement
effects of the moving surfaces, also called ‘thickness noise’. The efficiency of thickness noise is
poor at low fan rotation speed since the circumferential phase velocity of the fluid pressure
fluctuations generated by the moving blades is well below sonic velocity [13]. Therefore, the main
source term for subsonic axial fans is the distribution of forces applied by the blades on the fluid.
Periodic forces (steady rotating forces or unsteady rotating forces due to non-uniform but
stationary upstream flow) lead to discrete tones generation while random forces (such as turbulent
boundary forces) lead to broadband noise.

This section focuses primarily on the discrete tone generation at the BPF and its multiples due
to non-uniform, stationary upstream flow field. Indeed, when the flow entering the fan is uniform,
the blade forces are steady in a coordinate system rotating with the propeller, but they have an
angular frequency equal to o1 ¼ BO in a fixed reference frame (O is the angular velocity of the fan
and B is the number of blades, assuming an equal blade pitch). For subsonic fans, the
circumferential velocity of these forces is below the sound speed, thus this source (first derived by
Gutin) does not radiate efficiently. However, even a slight flow irregularity (non-uniform flow)
causes circumferentially varying blade forces and gives rise to a considerably larger radiated
sound at the BPF and its harmonics, especially in the axial direction of the fan [4]. In many
instances, axial fans operate in a non-uniform flow: this is the case of engine cooling axial fans
that operate behind a radiator/condenser system or in the wake of inlet guide vanes. The
interactions between the flow and the blades can be classified into potential interactions and wake
interactions [5].

There are many theoretical investigations of the radiated acoustic pressure as a function of the
fluctuating forces exerted by the rotating blades on the fluid [2–5], assuming that these forces can
be mathematically modelled or experimentally measured. We chose to use the direct fan noise
model of Morse and Ingard [4] because it leads to explicit analytical solutions of the radiated
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sound field. In this model, Morse and Ingard directly postulate the forces into the spectral domain
(circumferential Fourier series decomposition) and introduce these forces as dipolar source terms
in the Helmholtz equation to derive the radiated sound field [4]. In contrast, the FW–H theory
introduces the force source terms in the spatial domain using a retarded time formulation [5].
Moreover, Fowcs Williams and Hawkings derived their equation by extending the Lighthill
acoustic analogy to include the effects of solid boundary surfaces. As opposed to this, Morse and
Ingard directly assumed that the force distribution on a surface generates a dipolar-like sound
field and can be calculated by introducing them into the Helmholtz integral. Thus, the Morse and
Ingard model should be seen as capable of predicting ‘‘the sound field produced by a source
distribution which, in its essentials, could serve as a model for a propeller’’ [4]. In spite of
these differences, both approaches lead to qualitatively very similar expressions of the sound
radiation.

The system under study and coordinate systems are depicted in Fig. 1. Polar coordinates ðr1;j1Þ

are used to specify a point on the fan area, and spherical coordinates ðr;j; yÞ or Cartesian
coordinates ðx; y; zÞ are used to specify a point in the acoustic domain. The main derivations of the
Morse and Ingard model are recalled in this section. The first step of the direct model is to obtain
the aerodynamic forces per unit area at ðr1;j1Þ acting on the rotor blades for a non-uniform flow
passing through the fan. The second step derives the acoustic radiation of the corresponding
elementary dipoles at the BPF and its harmonics at ðr;j; yÞ:
2.1. Case of uniform flow

The aerodynamic pressure exerted by the fan blades on the fluid are decomposed into an axial
(z) component related to the thrust and a circumferential component related to the drag. The
pressure is assumed to be zero in the area between the blades. In a uniform flow, the fluid pressure
in a fixed reference frame is periodic in time with an angular frequency o1 ¼ BO; with its
amplitude independent of j1 and its phase proportional to j1: Thus, the time Fourier series of the
axial component of the aerodynamic pressure can be written as

f zðt; r1;j1Þ ¼
Xþ1

s¼�1

Asðr1Þe
�iso1 t�j1=Oð Þ ¼ f 0

zðr1Þ
Xþ1

s¼�1

asðr1Þe
isBj1e�iso1t (1)
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Fig. 1. Sound radiation from an axial fan (coordinate systems).
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with

asðr1Þ ¼
Asðr1Þ

f 0
zðr1Þ

; i ¼
ffiffiffiffiffiffiffi
�1

p

and t is the time. In Eq. (1), asðr1Þ is the coefficient of the Fourier series of the axial pressure in the
time domain, representing the complex strength of the sth harmonic of the BPF and f 0

zðr1Þ is the
time average value of the axial force per unit area at the radial position r1. In the following, the
circumferential component of the aerodynamic pressure (related to aerodynamic drag on the
blades) will be neglected in comparison to the axial aerodynamic pressure (z component) since this
is usually the case for a well-designed propeller.

2.2. Case of non-uniform flow

In the case of a circumferentially varying (but stationary) flow, the time average axial force per
unit area f 0

z is now a function of both r1 and j1: This force can itself be expanded into a spatial
Fourier series over the circumferential coordinate

f 0
zðr1;j1Þ ¼ f̄

0

zðr1Þ
Xq¼þ1

q¼�1

bqðr1Þe
iqj1 , (2)

where bq is the Fourier coefficient of the qth circumferential harmonic that accounts for the non-
uniformity with respect to j1; and f̄

0

zðr1Þ is the circumferential average of f 0
zðr1;j1Þ at the radial

position r1. Even if the circumferential variation of the upstream flow is small, it generally leads to
considerably larger radiated sound at low Mach number [4,14]. In the case of non-uniform flow,
the expression of the fluctuating axial pressure is therefore

f zðt; r1;j1Þ ¼ f̄
0

zðr1Þ
Xþ1

s¼�1

Xþ1

q¼�1

asðr1Þbqðr1Þe
iðsBþqÞj1e�iso1t. (3)

2.3. Free field acoustic radiation

The axial fluctuating blade forces appear as dipole terms in the Helmholtz radiation integral, so
the acoustic pressure can be expressed by integrating the unsteady rotating forces over the fan
area A,

pðt; r;j;WÞ ¼
ZZ

A

f zðt; r1;j1Þg1zðt; r1;j1; r; W;jÞr1 dr1 dj1; (4)

where g1z is the sound field from a unit strength point force in the z direction at ðr1;j1Þ: Following
Morse and Ingard [4], a far-field ðrbr1Þ approximation of g1z is given by

g1z ¼ �ik cos W
eikr

4pr

Xþ1

m¼�1

imJmðkr1 sin WÞeimðj�j1Þe�iot, (5)

where k ¼ o=c is the acoustic wavenumber, c is the sound speed, o is the angular frequency of the
radiated sound and Jm is the cylindrical Bessel function of order m. In order to express the
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resulting far-field radiation of the fan at the multiples of the BPF, one must substitute Eqs. (3) and
(5) into Eq. (4) and set o ¼ so1 and k ¼ so1=c ¼ sk1: Solving for the Helmholtz integral, and
using the orthogonality relationsZ 2p

0

eiðsBþqÞj1e�imj1 dj1 ¼ 2p if sB þ q ¼ m

and Z 2p

0

eiðsBþqÞj1e�imj1 dj1 ¼ 0 if sB þ qam,

the acoustic radiation due to axial forces is finally given by

pðt; r;j; WÞ ¼ �
ik1 cos W

4pr

Xþ1

s¼�1

Xþ1

q¼�1

isBþqeisk1reiðsBþqÞj�iso1t

	

Z a2

a1

sf̄
0

zðr1Þasðr1Þbqðr1ÞJsBþqðsk1r1 sin WÞ2pr1 dr1. ð6Þ

In Eq. (6), s and q represent the Fourier series expansions of the dipole strength over time t and
over the circumferential coordinate j1; respectively. Moreover, a1 and a2 are the interior radius
and exterior radius of the fan, respectively.

Morse and Ingard [4] proposed the following alternative form of Eq. (6):

pðt; r; W;jÞ ¼
cos W

r

Xþ1

n¼1

ðnk1Þ

	
Xþ1

l¼0

Z a2

a1

f̄
0

z

(
ðr1Þanðr1Þblðr1ÞJnB�lðnk1r1 sinWÞ

	 sin nk1ðr � ctÞ
h

þðnB � lÞ jþ
p
2

� �i
r1 dr1

þ
Xþ1

l¼0

Z a2

a1

f̄
0

zðr1Þanðr1Þblðr1ÞJnBþlðnk1r1 sinWÞ

	 sin nk1ðr � ctÞ
h

þðnB þ lÞ jþ
p
2

� �i
r1 dr1

)
, ð7Þ

where n and l are indices, respectively, accounting for time Fourier series decomposition and
circumferential Fourier series decomposition.

It can be seen from Eq. (7) that the radiated sound field can be decomposed into two groups of
progressing waves. The first group involves Bessel functions of order nB�l, which corresponds to
a rapidly rotating source pattern; the associated acoustic pressure field rotates with an angular
velocity

o� ¼
no1

nB � l
¼

nB

nB � l
O
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which is larger than O: The second group of waves involves Bessel functions of order nB þ l;
which corresponds to a slowly rotating source pattern; the acoustic pressure field rotates with an
angular velocity

oþ ¼
no1

nB þ l
¼

nB

nB þ l
O

which is smaller than O: For all values of nB, the JnB�l terms are much larger than the JnBþl terms,
provided that the argument nk1r1 sinW is roughly smaller than 1. In this case, the second group of
waves is therefore an inefficient noise radiator and can be neglected. Thus, Eq. (7) can be suitably
approximated by

pðt; r;W;jÞ ¼
cosW

r

Xþ1

n¼1

ðnk1Þ

	
Xþ1

l¼0

Z a2

a1

f̄
0

zðr1Þanðr1Þblðr1ÞJnB�lðnk1r1 sin WÞ sin nk1ðr � ctÞ
h

þðnB � lÞ jþ
p
2

� �i
r1 dr1. ð8Þ

It can also be noted that the case l ¼ nB generally has a large contribution in the sum and results
in a J0ðnk1r1 sinWÞ directivity function, which has its maximum along the fan axis ðW ¼ 0Þ: In such
a case, all the elementary radiating dipoles fluctuate in phase (the theoretical wave speed is
infinite) and the directivity of the sound radiation is a dipole along the fan axis. In practice, the
sound pressure must be computed with Eq. (8) by summing the circumferential Fourier
coefficients l around the value nB for a particular multiple n of the BPF.

The analytical results derived in this section are consistent with those derived by Lowson [3],
Goldstein [5] or by Blake [17]. The models are qualitatively equivalent except for the definition of
the source terms.
3. Inverse model

3.1. Discretizing the direct model

In the following, Eq. (6) is written in terms of a time harmonic expansion:

pðt; r;j; WÞ ¼
Xs¼þ1

s¼�1

psðso1; r;j; WÞe�iso1t (9)

with

psðso1; r;j; WÞ ¼ �
ik1 cos W

4pr

Xþ1

q¼�1

isBþqeisk1reiðsBþqÞj

	

Z a2

a1

sf̄
0

zðr1Þasðr1Þbqðr1ÞJsBþqðsk1r1 sin WÞ2pr1 dr1. ð10Þ
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Discretizing the integral over r1 and truncating the sum over the circumferential harmonics q in
Eq. (10) leads to

psðso1; r;j;WÞ ¼ �
ik1 cos W

4prj

Xq¼qmax

q¼qmin

isBþqeisk1reiðsBþqÞj

	
XI

i¼1

sf̄
0

zðr1iÞasðr1iÞbqðr1iÞJsBþqðsk1r1i sinWjÞ2pr1iDr1, ð11Þ

where r1i are I equally spaced points in the interval ½a1a2� separated by Dr1 and qmin, qmax are the
minimal and maximal circumferential harmonics in the sum; in the calculation of Eq. (11), qmin,
qmax are chosen such that qmino� sBoqmax: Finally, we introduce the index j to discretize the
radiation space into J locations psj ¼ psðso1; rj;jj; WjÞ;

psj ¼ �
ik1 cos Wj

4pr

Xq¼qmax

q¼qmin

isBþqeisk1rj eiðsBþqÞjj

	
XI

i¼1

sf̄
0

zðr1iÞasðr1iÞbqðr1iÞJsBþqðsk1r1i sinWÞ2pr1iDr1. ð12Þ

Eq. (12) can be written in a compact form

psj ¼
X

L

HsjLf sL, (13)

where the i and q indices have been condensed into a single index L ¼ ði; qÞ; f sL ¼

f̄
0

zðr1iÞasðr1iÞbqðr1iÞ is a source vector that characterizes the dipole strength distribution at radial
location i, for the time harmonic s and circumferential harmonic q. Moreover,

HsjL ¼ �
isk1 cos Wj

2rj

isBþqeisk1rj eiðsBþqÞjjDr1JsBþqðsk1r1i sinWjÞr1i

is a transfer function relating the source strength fsL to the radiated sound field psj. Eq. (13) is a
linear system that can be brought in matrix form,

ps ¼ Hsfs, (14)

where ps is a vector of far-field acoustic pressures measured at J locations, fs is a vector of
coefficients for unsteady rotating axial forces per unit area exerted by the blades on the fluid and
Hs is the transfer function between the force coefficients and the far-field acoustic pressure. All
these quantities are defined for the multiple s of the BPF.

3.2. Formulation of the inverse model

The objective of the inverse model is to obtain the source vector fs from measured far-field
acoustic data ps. To achieve this, the problem can be transformed into the minimization of a
quadratic function. We define the far-field acoustic pressure measurements p̂s to be equal to the
predicted acoustic pressure plus an error es

p̂s ¼ Hsfs þ es. (15)
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The vector fs can be obtained using the approach proposed by Nelson and Yoon [12] for the
estimation of acoustic source strength by inverse methods. The cost function Js to be minimized at
o ¼ so1 is defined as

Js ¼
XJ

j¼1

jesjj
2 ¼ eH

s es, (16)

where H denotes the Hermitian transpose and esj is the error between the predicted and the
measured acoustic pressure at the frequency o ¼ so1 and location j. The minimization of Js leads
to the optimal estimate of the source force vector fs0

fs0 ¼ Hþ
s p̂s, (17)

where Hþ
s ¼ ½HH

s Hs�
�1HH

s designates the pseudo-inverse of the matrix Hs. There is a single
solution of this minimization provided ½HH

s Hs� is positive definite. In our problem fHs ½H
H
s Hs�fs ¼

pHp is positive, which implies that the minimum is unique. Moreover, if the number of
measurement points J is equal to the number of terms Iðqmax � qmin þ 1Þ of the source vector to be
determined, the solution can be simply written fs0 ¼ H�1

s p̂s: If JoIðqmax � qmin þ 1Þ; the solution
is not unique.
3.3. Conditioning the inverse model

The sensitivity of the solution (fs0) to small changes ðdp̂sÞ in p̂s is determined by the condition
number k of the matrix Hs, which can be defined as

kðHsÞ ¼ kHskkHsk
�1 ¼ smax=smin, (18)

where kHsk is the 2-norm of the matrix Hs, and smin and smax are, respectively, the smallest and
the largest singular value of Hs. The sensitivity of the solution can be directly derived from this
condition number [12]

kdfs0k
kfs0k

¼ kðHsÞ
kdp̂sk

kp̂sk
. (19)

When k is small,Hs is well conditioned and small deviations in the pressure vector do not produce
significant changes dfs0 in the force vector solution. But when k is large, the problem is said to be
ill-posed because small changes in p̂s lead to considerably large errors in the solution. In order to
avoid a large discrepancy in the singular values of Hs and therefore an ill-conditioned problem, a
stabilization approach is used where the force term is multiplied by a penalty factor. This method
leads to the following alternative cost function:

Js ¼ eH
s es þ bfHs fs, (20)

where b is a regularization factor. Finally, the solution of this new minimization problem is given
by [12]

fs0 ¼ ½HH
s Hs þ bI��1HH

s p̂s. (21)
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3.4. Choice of the regularization parameter

The key point for a good regularization is a correct choice of the regularization parameter b:
The approach used in this paper is the L-curve criterion [15,18]. The L-curve consists of plotting
the 2-norm kfsk of the regularized solution versus the residual 2-norm kp̂s � psk in log–log scale,
corresponding to various values of b. The generic L-curve is shown in Fig. 2 [18]. This curve can
be decomposed into two regions: (1) in the part of the curve on the right of the corner, the solution
is over-regularized, this situation is also called over-smoothing and (2) in the part of the L-curve
above the corner, the regularized solution is dominated by the effects of error in the input data
(such as measurement noise in the acoustic pressures p̂s), the solution is under-regularized, this
situation is called under-smoothing. In between these two regions, an optimal regularization
parameter can be found, for which there is a trade-off between both under- and over-smoothing
situations, such that the residual kp̂s � psk is reasonably small and the regularized solution has a
reasonably small norm kfsk [15,18]. There are other methods to find the optimal regularization
parameter but the L-curve criterion seems to be more robust [15,18] than the generalized cross-
validation technique for example. In this paper, the optimal parameter corresponding to the
maximum curvature of the L-curve corner is determined manually.
4. Numerical simulations

4.1. Sensitivity analysis

4.1.1. Setting
A typical automotive engine cooling fan is considered in the simulation, with the following

parameters: exterior diameter 2a2 ¼ 30 cm; interior diameter 2a1 ¼ 12:5 cm; rotational speed
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O=2p ¼ 50 Hz (the Mach number at blade tip is therefore 0.14), B ¼ 6 blades with uniform blade
pitch (the BPF is therefore 300 Hz). The fan radius is discretized into I equally spaced points r1i

ð1pipIÞ in the interval ½a1a2�: The aeroacoustic sources over the fan area are defined according to

Eq. (3), with f sL ¼ f̄
0

zðr1iÞasðr1iÞbqðr1iÞ ¼ 1 when q ¼ �sB and f sL ¼ f̄
0

zðr1iÞasðr1iÞbqðr1iÞ ¼ 0 when

qa� sB: This simple situation corresponds to a sound radiation for a particular multiple of the
BPF o ¼ so1 due only to the circumferential harmonic q ¼ �sB; in reality, the sound pressure at
o ¼ so1 as given by Eq. (8) is a combination of various circumferential harmonics q centred
around q ¼ �sB; but the circumferential harmonic q ¼ �sB has the largest contribution to the
resulting sound pressure for subsonic fan operation. The far-field acoustic directivity was
calculated according to Eq. (6) at J equally spaced downstream points, either on an arc of circle
located in the (xz) plane (f ¼ 0; Fig. 1), or on a hemispheric surface centred on the fan. The angles
y ¼ �p=2 and þp=2 (Fig. 1) were not included in the calculations of the far-field directivity since
the zero acoustic pressure in these directions would render H singular.

The numerical scheme of the inverse model is: (1) impose unsteady aerodynamic forces fs over
the surface of the blade; (2) calculate the resulting acoustic pressure at the far-field points
according to Eq. (14) (direct model); (3) reconstruct the forces fs0 using Eq. (21) (inverse model).
The results of the direct model are plotted in Fig. 3 in terms of the dipole strength distribution and
downstream acoustic directivity at the BPF ðs ¼ 1Þ: Note that the acoustic directivity of the fan
has been superposed with the acoustic directivity of a monopole of identical on-axis directivity.
These results show that only the circumferential harmonic q ¼ 6 of the dipole strength in Eq. (2)
contributes to the far-field sound; moreover, the acoustic directivity of the fan in this case is
perfectly dipolar.

In order to account for the presence of noise in the inverse model, a random noise is added to
the ‘‘measured’’ far-field data as follows:

psn ¼ ps þ en,
Fig. 3. Numerical results of the direct model at the BPF ðs ¼ 1Þ; 2a2 ¼ 30 cm; 2a1 ¼ 12:5 cm; O=2p ¼ 50 Hz; B ¼ 6; (a)

imposed dipole strength distribution; (b) far-field acoustic directivity. The acoustic directivity of the fan has been

superimposed with the acoustic directivity of a monopole of identical on-axis directivity (pale grey surface).
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where ps is the prediction from the direct model, Eq. (14), psn is a noisy prediction and esn is a
normally distributed random error vector which has a zero mean and a variance s2: The signal-to-
noise (S/N) ratio is defined as

S

N
¼ 20 log10

1

J

jpsj
2

s2


 �1=2

. (22)

In the following sections, the inverse model is analysed in terms of the regularization parameter b;
the geometrical sensor arrangement, the frequency and the S/N ratio. Moreover, the spatial
discretization of the fan used in the source reconstruction assumes I ¼ 3 equally spaced points r1i

ð1pip3Þ in the radial direction and 9 circumferential harmonics of the dipole strength
distribution ðqmin ¼ �sB � 4; qmax ¼ �sB þ 4Þ: Therefore the dimension of the unknown source
vector fs is Iðqmax � qmin þ 1Þ ¼ 27:
4.1.2. Influence of the regularization parameter b
The inverse model is ill-posed, which means that small errors in the input data lead to large

perturbations in the solution if no care is taken in the choice of b: The case of a zero noise
ðS=N ¼ 1Þ; s ¼ 1 (aeroacoustic sources at the BPF) and J ¼ 64 downstream far-field points
regularly spaced on a hemispheric surface is first chosen in order to study the influence of b on the
reconstructed unsteady force and the reconstructed acoustic directivity. In this case, the condition
number k of the matrix Hs is large (7	 1010), which means that the problem is ill-conditioned.

Fig. 4 shows the reconstructed dipole strength distribution over the fan area and the
reconstructed downstream far-field directivity for various values of b: These results are to be
compared to the imposed data of Fig. 3. When no regularization of the inverse problem is imposed
ðb ¼ 0Þ; contributions of other circumferential Fourier modes than q ¼ �sB lead to errors in the
magnitude of the reconstructed force and the reconstructed and imposed acoustic radiation neither
fit in magnitude nor in directivity. For large values of b (100), the distribution of the reconstructed
force is correct but the magnitude is much smaller than the imposed one, because such large values
of b significantly decrease the ratio between the smallest and the largest singular value of Hs;
moreover, the estimated acoustic radiation is erroneous in this case. The intermediate value b ¼

10�10 yields a satisfactory reconstruction of both the aeroacoustic sources and acoustic far-field.
Fig. 5 shows the L-curves associated to the inversion of the system at BPF and its first three

harmonics. As already noted by several authors [11,12,15], the regularization parameter is not an
arbitrary choice. In the case depicted here, the values 10�12obo5 	 10�4 provides an optimal
reconstruction range for which kfsk is constant as a function of b and leads to a good match
between the estimated acoustic pressure and the imposed acoustic field. As demonstrated in Ref.
[18], for a very small b; the L-curves do not have a vertical branch in the uppermost part but a
horizontal asymptote since no noise is added to the input acoustic pressure vector.
4.1.3. Influence of the S/N ratio
A random noise (normal distribution with zero average) is now algebraically added to the

imposed far-field data as given by Eq. (22). The influence of S/N on the reconstruction is analysed
in terms of the inversion of the system at BPF via the L-curve behaviour in Fig. 6. When
measurement noise is added, a vertical asymptote appears for low values of the regularization
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Fig. 4. Left-hand column: reconstructed dipole strength distribution over the fan area at 1 BPF ðs ¼ 1Þ and right-hand

column: reconstructed downstream far-field directivity for various values of the regularization parameter b: (a) b ¼ 0;
(b) b ¼ 10�10; (c) b ¼ 10�0: Zero noise ðS=N ¼ 1Þ; J ¼ 64 far-field points on a downstream hemispheric surface. The

acoustic directivity of the fan has been superimposed with the acoustic directivity of a monopole of identical on-axis

directivity (pale grey surface).
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Fig. 5. L-curves corresponding to the source reconstruction at BPF and its first three harmonics. (a) s ¼ 1; (b) s ¼ 2; (c)

s ¼ 3; (d) s ¼ 4: Zero noise ðS=N ¼ 1Þ; J ¼ 64 far-field points on a downstream hemispheric surface. The values of b
are indicated on the curves.
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parameter. Moreover, Fig. 6 shows that the region of optimal reconstruction with respect to the
regularization parameter narrows as S/N increases. The optimal values of b corresponding to the
L-curve corners are about 10�6, 10�5 and 10�3 for the S/N ratios of 20, 5 and 1 dB, respectively,
which means that more filtering is required when adding noise in the input data. A satisfactory
reconstruction of the far-field data not leading to excessive values of the forces kfsk is achievable
for a S/N ratio up to 0 dB.

4.1.4. Influence of the geometrical arrangement of sensors
The inverse problem is now investigated with respect to the geometrical arrangement of

downstream far-field acoustic sensors. Two arrangements are investigated (Fig. 7): a circular arc
located in the plane j ¼ 01 and extending from W ¼ �801 to 801, or a regular distribution on a
hemispheric surface. In both cases, 64 sensors are assumed. Fig. 8 shows the condition number
kðHÞ as a function of frequency for the two sensor arrangements and for s ¼ 1; I ¼ 3: At low
frequency, the condition number k is large for both sensor arrangements; the resulting poor
conditioning of the inverse problem is due to the insufficient spatial resolution of the source for
frequency below 200 Hz. As the frequency increases, the condition number improves for the
hemispheric arrangement of sensor while k remains large for the circular arrangement. As
expected, a circular sensor arrangement is therefore less appropriate than a hemispheric
arrangement to reconstruct the surface source distribution.
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Fig. 6. L-curves corresponding to the inversion of BPF for various values of the signal-to-noise ratio S/N: (a) S=N ¼

20 dB; (b) S=N ¼ 5 dB; (c) S=N ¼ 1 dB: J ¼ 64 far-field points on a downstream hemispheric surface. The values of b
are indicated on the curves.
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In order to test the ability of the circular sensor arrangement to reconstruct the forces fs, the
source reconstruction is conducted with O=2p ¼ 50 Hz; b ¼ 10�5; s ¼ 1; S=N ¼ 20 dB: The
optimal reconstruction (Fig. 9) shows that the inverse model is able to reconstruct the forces from
64 measurement points located on a circular arc even if the transfer matrixH is badly conditioned.
From these estimated forces, a correct acoustic directivity is reconstructed. This can be explained
by the dipole axial symmetry radiated by the imposed forces described in the setting.

4.2. Simulation of fan source reconstruction for non-uniform flow

To illustrate the inverse model for non-uniform flow condition, the following case is considered:
the source strength function f 0

zðr1;j1Þ of Eq. (2) is given by

f 0
zðr1;j1Þ ¼

1 if �
F1

2
þ 2nppj1pþ

F1

2
þ 2np;

0 otherwise:

8<
: (23)
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Fig. 7. Downstream radiation space meshing (the radiation surface of the fan is shown at the centre). (a) 64 sensors on

an arc of a circle from W ¼ �801 to 801 and j ¼ 01; and (b) 64 sensors on a hemispheric surface.
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Fig. 8. Condition number k of the matrix H as a function of f for different sensor arrangements. I ¼ 3; s ¼ 1;
qmin ¼ sB � 4; qmax ¼ sB þ 4: J ¼ 64 measurements points (solid: on a hemispheric surface, dashed: on an arc of a circle

as shown in Fig. 7).
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Fig. 9. (a) Reconstructed dipole strength distribution over the fan area and (b) reconstructed downstream far-field

directivity for b ¼ 10�5; s ¼ 1; S=N ¼ 20 dB: J ¼ 64 far-field points on arc of a circle. The acoustic directivity of the fan

has been superimposed with the acoustic directivity of a monopole of identical on-axis directivity (pale grey surface).
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This situation describes a spatial variation of the source distribution in the circumferential
direction, and may therefore represent a strongly circumferentially non-uniform flow. From Eq.
(2), the circumferential Fourier coefficients bq are given in this case by

bqðr1Þ ¼
F1

2p
sinðqF1=2Þ

qF1=2
.

Moreover, the circumferential average f̄
0

zðr1Þ and the time Fourier coefficients asðr1Þ are
arbitrarily set to unity and F1 is set to 151. Therefore, the coefficients of the imposed unsteady

rotating force vector fs in Eq. (14) reduce to f sL ¼ f̄
0

zðr1iÞasðr1iÞbqðr1iÞ ¼ bq: All other data are

similar to the previous sections (B ¼ 6; O=2p ¼ 50 Hz). Fig. 10 shows the corresponding dipole
strength distribution over the fan area and its circumferential Fourier series decomposition
(truncated to order 60) along 2 radii: r1 ¼ 8 and 14 cm.

In this example, the inversion is carried out for the first 4 harmonics of the BPF ðs ¼ 1; 2; 3; 4Þ;
the propeller was discretized in 2 circles ðI ¼ 2Þ located at r11 ¼ 8 cm and r12 ¼ 14 cm and the
number of circumferential harmonics q is chosen such that qmin ¼ �sB � 2; qmax ¼ �sB þ 3; thus
Q ¼ 6; the dimension of the unknown source vector fs is therefore Iðqmax � qmin þ 1Þ ¼ 12:
Finally, J ¼ 36 acoustic pressure sensors are simulated on a hemispheric surface 1.5 m
downstream the fan, with a S/N ratio of 5 dB.

The condition number of the transfer matrix H is given by k ¼ 3:7 	 104 at BPF ðs ¼ 1Þ;
k ¼ 2:1 	 103 at 2 BPF ðs ¼ 2Þ; k ¼ 380 at 3 BPF ðs ¼ 3Þ; and k ¼ 108 at 4 BPF ðs ¼ 4Þ:
Optimal values of the regularization parameter derived from the corresponding L-curve corners
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Fig. 10. (a) Imposed dipole strength distribution over the fan area and (b) its circumferential Fourier series

decomposition (truncated to order 60) along 2 radii: r1 ¼ 8 cm and r1 ¼ 14 cm (right).
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are: b ¼ 5 	 10�7 for s ¼ 1 and b ¼ 10�4 for s ¼ 2; 3; 4: These values were found to be sufficient to
provide both accurate reconstruction of the far-field data and acceptable values of the force per
unit area vector kfsk:
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This section focuses on the ability of the inverse model to reconstruct the dipole strength
distribution of Fig. 10, both in the spatial and circumferential wavenumber domains. Fig. 11
presents the results of the inverse model for the first four harmonics of BPF s ¼ 1; 2; 3; 4: These
results show that the circumferential location of the maximum force acting by the blade on the
fluid can be predicted from the inversion at each of the 4 harmonics, but the imposed distribution
of Fig. 10 cannot be accurately reconstructed from each of these those plots. Moreover, the
circumferential wavenumber spectrum of the reconstructed force distribution is generally in good
agreement with the imposed force spectrum, especially for the outer radial element (low order
circumferential harmonics are poorly reconstructed at the inner radial element for s ¼ 1). Finally,
the source distributions for the first four harmonics of BPF s ¼ 1; 2; 3; 4 are superposed in Fig. 12
to represent the complete circumferential wavenumber spectrum of the unsteady forces. The
superposition of the forces estimated from the first four harmonics significantly improves the
quality of the reconstruction. The reconstructed force distribution is close to the imposed
Fig. 11. Left-hand column: reconstructed dipole strength distribution over the fan area, and right-hand side column: its

circumferential Fourier series decomposition (truncated to order 60) along 2 radii: r1 ¼ 8 cm and r1 ¼ 14 cm: (a) s ¼ 1;
(b) s ¼ 2; (c) s ¼ 3; (d) s ¼ 4: S=N ¼ 5 dB; J ¼ 36 far-field points on a downstream hemispheric surface.
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Fig. 11. (Continued)
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distribution of Fig. 10; however, the magnitude of the reconstructed forces is not as large as the
amplitude of the imposed forces because low order circumferential harmonics are not properly
reconstructed over the whole radiation surface.

To summarize, the inverse model is able to partially reconstruct the unsteady rotating forces acting
by the blades on the fluid and thus locate ‘‘hot spot’’ non-uniform flow entering the fan. The acoustic
signature of the fan measured at a relatively low number of locations is a useful tool to derive the
unsteady behaviour of the fluid near the propeller surface even in presence of measurement noise.
5. Preliminary experimental results

5.1. Experimental set-up

The inversion procedure to extract aeroacoustic source distributions from far-field acoustic
data was tested on an automotive axial fan. Experiments were conducted on an engine cooling
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Fig. 12. Representation of the axial forces acting by the rotor on the fluid per unit surface: (a) reconstructed forces in

the plane of the fan and (b) circumferential Fourier series decomposition (bilateral spectrum), up: inner radius 8 cm;

down: outer radius 14 cm; +, imposed forces; J, reconstructed forces. S=N ¼ 5 dB; V ¼ 2; Q1 ¼ �sB � 2; Q2 ¼

�sB þ 3; s ¼ 1; 2; 3; 4; J ¼ 36 on a hemispheric surface.
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unit consisting of a symmetric six-bladed ðB ¼ 6Þ axial fan and a radiator. The fan has an exterior
diameter of 30 cm and a central hub of 12.5 cm in diameter. A small (4	 8 cm2) rectangular piece
of adhesive tape was bonded on the upstream side of the radiator at about 5 cm from the fan axis
in order to enhance the non-uniformity of the incoming flow and therefore increase tonal noise
radiation. The unit was driven by a variable DC source (0–20 V/0–60 A) which was adjusted to set
a rotational speed of the fan of 50 Hz. The set-up was placed in a semi-anechoic room with the fan
axis horizontal and at 50 cm above the ground, and absorbing material was placed on the ground
under the set-up in order to minimize ground reflections (Fig. 13).

For simplicity, acoustic measurements were performed at J ¼ 17 equally spaced locations on a
arc of a circle in the horizontal plane at 1.5 m from the fan centre. The microphone directions
ranged from y ¼ �801 to 801 from the fan axis. A circular arrangement of sensors was found
sufficient to provide a satisfactory source reconstruction in theory when the radiated sound field is
axi-symmetric (Fig. 9). This is especially true at BPF, where the measured radiated sound field is
almost dipolar and the circumferential harmonic of the force q ¼ 6 is found to be the main
contributor. The circular arrangement is still expected to provide an acceptable solution for the
first harmonic of the BPF, where the experimental directivity showed a dipolar radiation slightly
shifted from the fan axis. A windscreen was mounted on the microphone to minimize the effect of
flow noise. Far-field conditions from the fan centre are found at distances over 1.5 m since this
distance is much larger than the propeller radius and represents approximately 1.3 wavelengths
for s ¼ 1 (300 Hz) and 2.6 wavelengths for s ¼ 2 (600 Hz). Note that the measured quantity was
the far-field acoustic power spectrum (obtained by averaging 20 time sequences for a given
location) using a single microphone which was sequentially moved over the arc of a circle, in order
to further remove flow noise from the acoustic data. Therefore, the phase variations of the
acoustic pressure over the circular arc were not considered in the source reconstruction scheme.

In the inversion scheme, the propeller was discretized in 2 circles ðI ¼ 2Þ located at
r11 ¼ 8 cm and r12 ¼ 14 cm and the number of circumferential harmonics q is chosen such that
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Fig. 13. Experimental set-up.
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qmin ¼ �sB � 3; qmax ¼ �sB þ 3 Q ¼ 7; therefore the dimension of the unknown source vector fs
is Iðqmax � qmin þ 1Þ ¼ 14: The condition number in this case is k ¼ 8:9 	 108 at BPF ðs ¼ 1Þ and
k ¼ 6:5 	 105 at 2 BPF ðs ¼ 2Þ: The inversion problem for such a configuration is relatively ill-
conditioned because the acoustic sensors cover only an arc of a circle instead of the whole
downstream half-space (see Section 4.1).
5.2. Experimental results

Figs. 14 and 15 show the reconstructed dipole strength distribution over the fan area and the
measured and reconstructed far-field directivity over the sensor arc at BPF and at 2 BPF, for
various values of the regularization parameter. Fig. 16 shows the corresponding L-curves for
s ¼ 1 and 2.

A value of b ¼ 10�6 corresponding to the corner of the two L-curves of Fig. 16 was chosen for
the regularization parameter for both s ¼ 1 and 2 since it provides a reasonably small error
kp̂s � psk without leading to an excessive value of the source strength kfsk: The measured and
estimated directivity at s ¼ 1 (Fig. 14) and s ¼ 2 (Fig. 15) are in good agreement for b ¼ 10�6: The
measured and reconstructed directivity at s ¼ 1 is axi-symmetric and dipolar. As expected, the
dipole strength distribution over the fan shows a dominant q ¼ SB ¼ 6 circumferential harmonic
for b ¼ 10�6: However, the measured and reconstructed directivity at s ¼ 2 is not symmetric with
respect to the fan axis. In this case, a superposition of several circumferential harmonics is
necessary to reproduce the measured acoustic directivity for b ¼ 10�6: It can be noticed however
that the value of the estimated source strength is rather sensitive to the value of the regularization
parameter. This large sensitivity results from the poor conditioning of the problem when simply a
circular arrangement of sensor is used to reconstruct a source strength distribution over the source
area. Grace et al. [11] made similar observations in the context of a slightly different inverse
model.
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Fig. 14. Left-hand column: reconstructed dipole strength distribution over the fan area at 1 BPF ðs ¼ 1Þ and right-hand

column: reconstructed far-field directivity (+, measured directivities; J, reconstructed directivities) for various values

of the regularization parameter b: (a) b ¼ 10�2; (b) b ¼ 10�6; (c) b ¼ 10�14: J ¼ 17 measured points on a downstream

arc of a circle.
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6. Conclusion

An inverse aeroacoustic model aiming at reconstructing the aerodynamic forces (dipole
strength distribution) acting by the fan blades at multiples of the BPF on the fluid has been
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Fig. 15. Left-hand column: reconstructed dipole strength distribution over the fan area at 2 BPF ðs ¼ 2Þ; and right-

hand column: reconstructed far-field directivity (+, measured directivities, J, reconstructed directivities) for various

values of the regularization parameter b: (a) b ¼ 10�2; (b) b ¼ 10�6; (c) b ¼ 10�14: J ¼ 17 measured points on a

downstream arc of a circle.
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developed. It is based on a discrete form of Morse and Ingard’s analytical direct model that relates
the unsteady forces to the radiated sound field. To overcome the ill-conditioning of the inverse
problem, a penalization of the source strength is used to stabilize the solution. Numerical
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Fig. 16. L-curves corresponding to the source reconstruction at: (a) BPF ðs ¼ 1Þ; and (b) 2BPF ðs ¼ 2Þ: J ¼ 17

measured points on a downstream arc of circle. The values of b are indicated on the curves.
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simulations and experimental results for an engine cooling fan demonstrate the ability of the
inverse model to reconstruct the dipole strength distribution over the fan surface, and possibly
locate acoustic ‘‘hot spots’’ of the fan resulting from circumferentially non-uniform upstream
flow, under realistic conditions of S/N ratio and acoustic far-field sensing arrangement. This
method can thus serve as a non-intrusive technique to estimate the unsteady forces acting on the
rotating blades and a tool for studying the interaction between a non-uniform flow and a rotor. In
the second part of this paper, the inverse model is exploited in order to derive optimal
control source and error sensor arrangements for active control of tonal noise from engine cooling
axial fans.
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